Polynomial bounds for chromatic number II: Excluding a star‐forest

نویسندگان

چکیده

The Gyárfás–Sumner conjecture says that for every forest H $H$ , there is a function f ${f}_{H}$ such if G $G$ -free then χ ( ) ≤ ω $\chi (G)\le {f}_{H}(\omega (G))$ (where ,\omega $ are the chromatic number and clique of ). Louis Esperet conjectured that, whenever statement holds, can be chosen to polynomial. only known true modest set forests Esperet's almost no forests. For instance, it not when five-vertex path. Here we prove each component star.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Bounds on the Chromatic Polynomial and on the Number of Acyclic Orientations of a Graph

An upper bound is given on the number of acyclic orientations of a graph, in terms of the spectrum of its Laplacian. It is shown that this improves upon the previously known bound, which depended on the degree sequence of the graph. Estimates on the new bound are provided. A lower bound on the number of acyclic orientations of a graph is given, with the help of the probabilistic method. This ar...

متن کامل

Topological lower bounds for the chromatic number: A hierarchy

Kneser’s conjecture, first proved by Lovász in 1978, states that the graph with all kelement subsets of {1, 2, . . . , n} as vertices and all pairs of disjoint sets as edges has chromatic number n−2k+2. Several other proofs have been published (by Bárány, Schrijver, Dol’nikov, Sarkaria, Kř́ıž, Greene, and others), all of them based on the Borsuk–Ulam theorem from algebraic topology, but otherwis...

متن کامل

Upper bounds for the chromatic number of a graph

For a connected graph G of order n, the clique number ω(G), the chromatic number χ(G) and the independence number α(G) satisfy ω(G) ≤ χ(G) ≤ n − α(G) + 1. We will show that the arithmetic mean of the previous lower and upper bound provides a new upper bound for the chromatic number of a graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2022

ISSN: ['0364-9024', '1097-0118']

DOI: https://doi.org/10.1002/jgt.22829